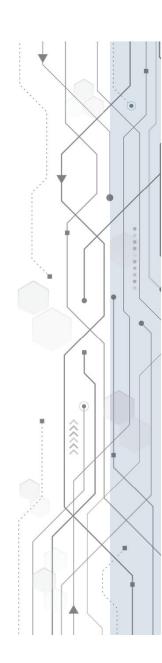


Overview

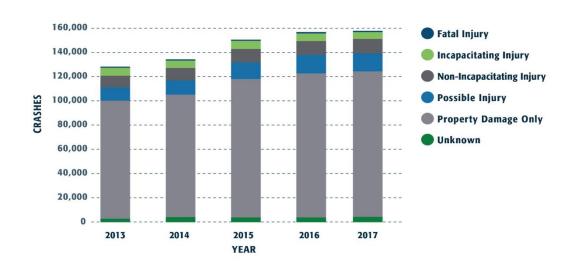
Why TSMO - Need for a New Perspective


Master Plan Overview

Strategic Plan

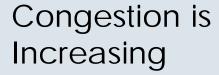
Program Plan

Service Layer Brochures

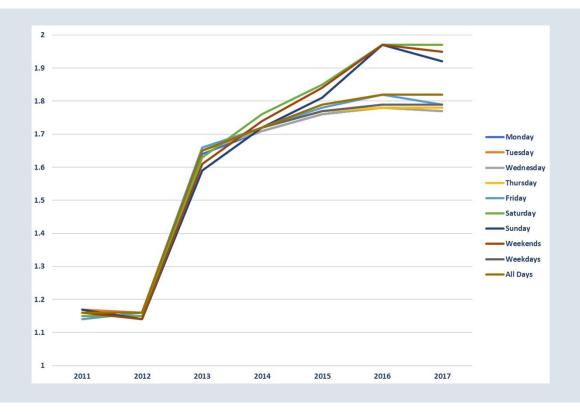

Next Steps

Why TSMO – Need for a New Perspective

Challenges we face: Safety | Congestion | Funding

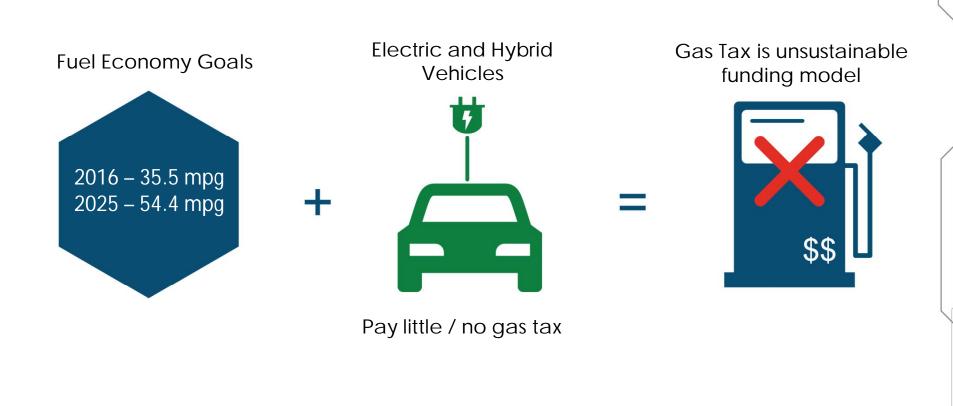


Crashes are Increasing


In 2016, fatality rate = 1.56 fatalities per 100 million VMT vs 1.19 national average (FHWA, 2018)

Challenges we face:

Safety | Congestion | Funding


TTI went from 1.16 in 2011 to 1.82 in 2017 (NPMRDS)

Challenges we face:

Safety | Congestion | Funding

Gas Tax for Transportation Funding – HB2

Recent extra 10 cent per gallon tax will provide approximately \$380 million annually.

http://www.aldailynews.com/ivey-signs-gas-tax-increase-into-law/

GREAT START - NOW, WE HAVE TO WORK SMARTER

Change Your Perspective

Need for a New Perspective

- Focus on CITIZEN needs not agency needs
- Promote INNOVATION
- OPTIMIZE existing infrastructure
- Create PARTNERSHIPS

Consistent with HB1 - Joint Transportation Committee

Need for a New Perspective - Transportation Bill (HB1)

"...to <u>operate at maximum efficiency</u> with greater returns in highway benefits for the amount of public funds expended..."

"...effective highway state plans are well organized with defined processes for identifying all potential sources of innovation, including by not limited to, broad stakeholder engagement and partnerships, shared performance metrics and evidenced-based practices, adoption of the most cost effective technology in materials and components of road and bridge construction, and cost effective and efficient organizational structures and operations..."

Spending vs Investing

A Different Perspective: Focus on OPERATIONS

"Transportation is a utility, essential for our access to basic necessities, i.e., food, shelter, public safety and security, education, and recreation. It should be treated like ... water, electricity, waste disposal, natural gas, telephone, etc."

 Eric Peterson, Former Deputy Administrator of the Research and Innovative Technology Administration at the U.S. DOT, Eno Board of Advisors

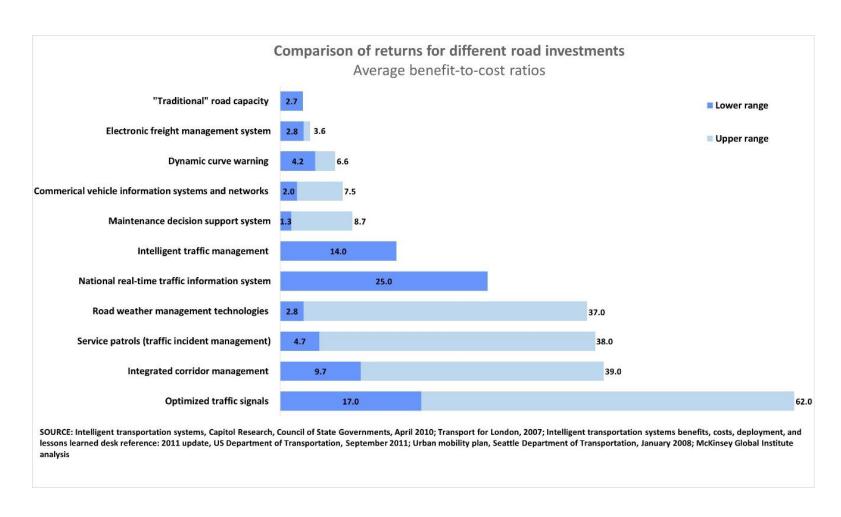


Building more can't be the only answer

Avoid situations like this...

Transportation Systems Management and Operations (TSMO)

An integrated set of strategies to optimize the performance of existing infrastructure through the implementation of multimodal and intermodal, cross-jurisdictional systems, services, and projects designed to preserve capacity and improve security, safety, and reliability of the transportation system. MAP-21, SECTION 1103 (a) (30) (A)



So really, what is TSMO?

- Optimizing the use of existing facility
- Maximizing performance of the system
- <u>Targeted</u> solutions to safety/congestion causes
- Complement to capacity projects

Increased Return on Investment, Reduced Costs

SIGNIFICANT Safety Benefits

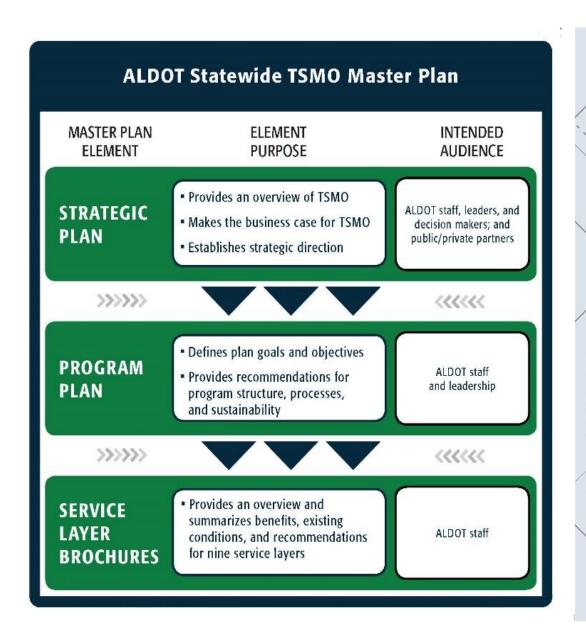
Examples include:

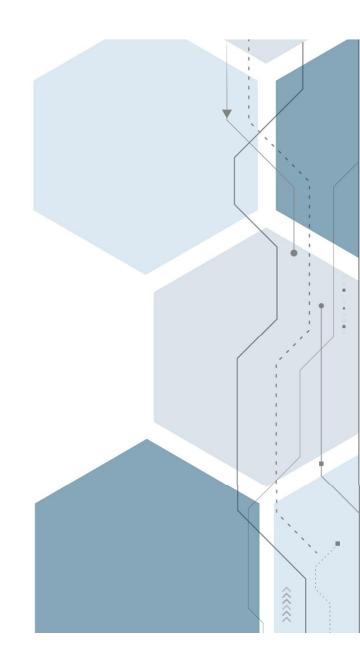
- Traffic Incident Management
 - 30 40% reduced incident duration
- Traffic Signal Optimization
 - 30% crash reduction
- Traveler Information
 - 4 10% driver stress reduction

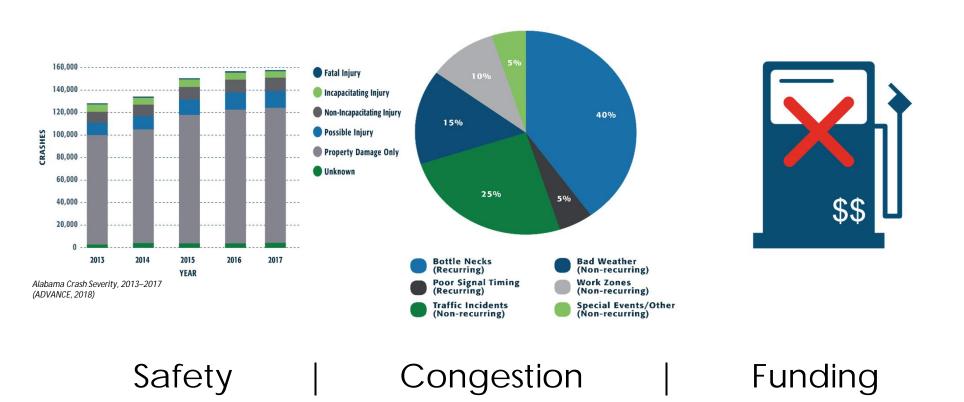
Better Customer Service – Work Zone Management

- TMC Operations
- Safety Service Patrols
- Traveler Information
- Traffic Signal Coordination

Better Customer Service – Special Event Management


- TMC Operations
- Safety Service Patrols
- Traveler Information
- Traffic Signals Optimization
- Regional Traffic Operations Program – Tuscaloosa


Master Plan Overview


Master Plan Overview

Strategic Plan

Strategic Plan - Business Case for TSMO

Strategic Plan – TSMO Vision

Manage and operate a <u>safe</u>, <u>reliable</u>, <u>optimized</u> transportation system for all users through the <u>collaborative</u> efforts of stakeholders, <u>technology-based</u> solutions, and <u>innovative</u> strategies.

Strategic Plan - Goals and Objectives

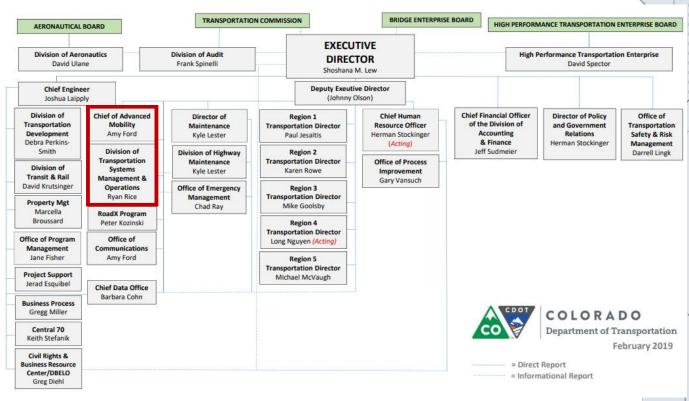
GOAL			OBJECTIVE			
			Reduce the number of overall crashes (including secondary) as well as severity			
			Reduce work zone-related crashes			
	8	SAFETY	Increase the resiliency of the transportation system to extreme weather events			
MOVE			Enhance and expand TIM program			
			Increase safety of freight corridors			
M			Improve travel time reliability			
			Provide timely information and mobility choices to the public			
		MOBILITY	Reduce congestion and bottlenecks			
	-		Work with partners to actively manage traffic during large-scale special events			
			Enhance freight route mobility			
111			Demonstrate fiscal responsibility			
V C	12-		Increase sustainability and minimize environmental impacts			
Ž	(About)	ACCOUNTABILITY	Integrate TSMO solutions into ALDOT policies, plans, and procedures			
MANAGE			Create and implement project prioritization methodology based on data-driven decisions			
			Develop performance measures to make the TSMO business case			
			Develop system standards to promote data sharing, coordination, and integration			
	0		Elevate TSMO through leadership buy-in of the benefits and innovative technology			
			Identify where to engage with conventional silos to promote collaboration			
=		COLLABORATION	Create a forward-thinking environment with continuous quality improvement practices			
MOTIVATE			Establish formal career paths to encourage retention and develop workforce			
			Increase efficiency by seeking internal and external partnership opportunities			
			Realize opportunities with P3 (public-private partnerships)			
			Provide training and foster growth and sharing of knowledge			
		INNOVATION	Seek strategic pilot project deployment opportunities			
			Integrate consideration of innovative solutions for all modes			

Program Plan

Program Plan Recommendations

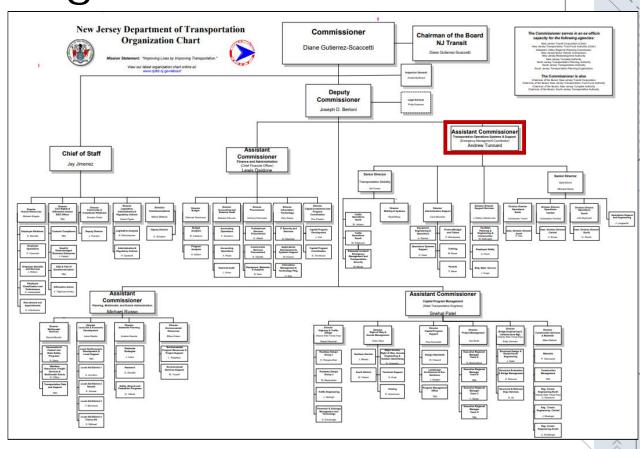
- TSMO Program Structure
- TSMO Programmatic Processes
- TSMO Program Success

Program Structure: Leadership and Organizational


 Creation of a State TSMO Engineer and Regional Supporting Staff

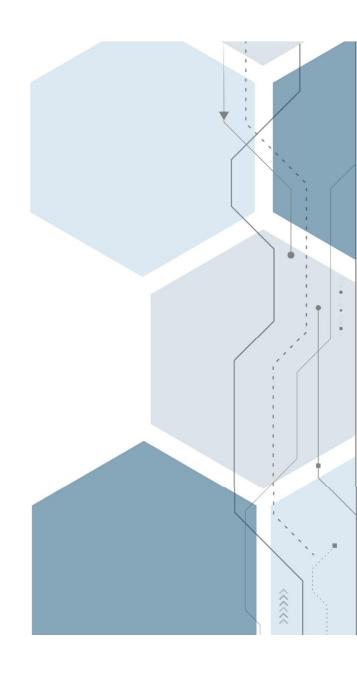
Program Structure: Leadership and Organizational

Example work chart:


Colorado DOT

Program Structure: Leadership and Organizational

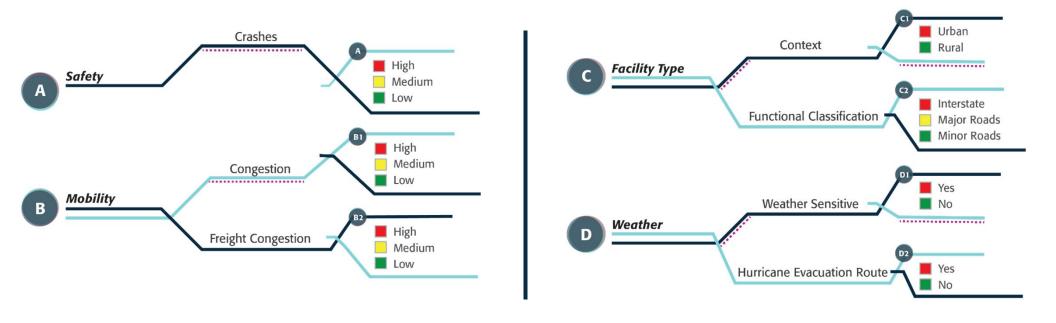
• Example work chart:


New Jersey DOT

Program Structure: Program Support

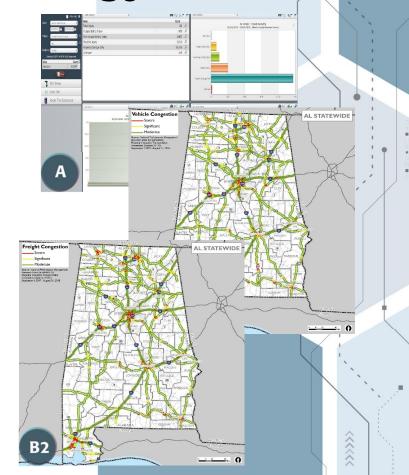
Dedicated funding for:

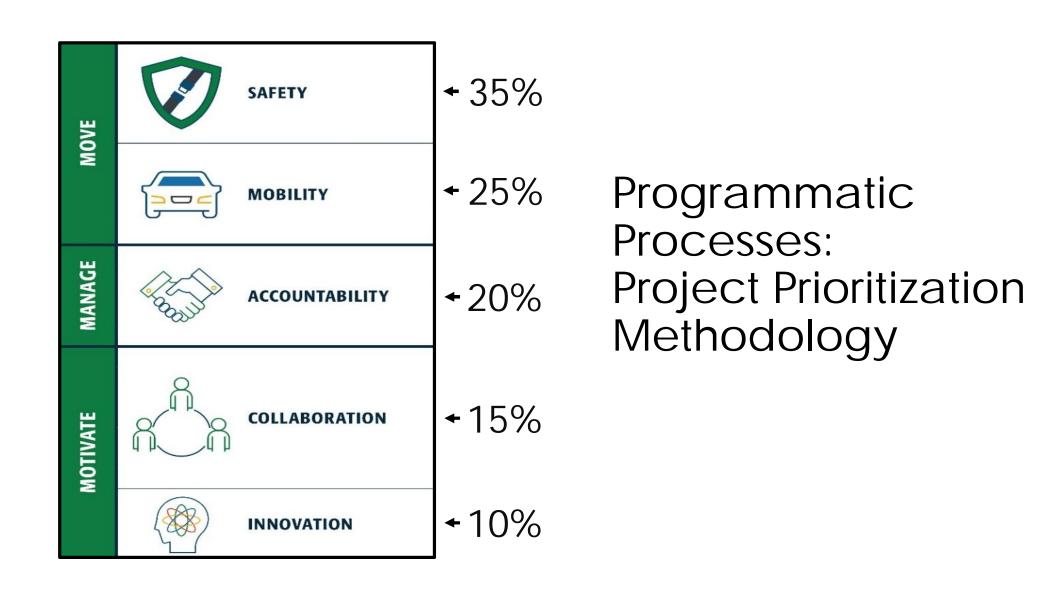
- Capital,
- Operations, and
- Maintenance.



- Revise Guide for Developing Construction Plans (GDCP) to include TSMO representation
- Integrate TSMO strategies into STIP process
- Work with MPOs/RPOs/local jurisdictions to integrate TSMO strategies into their planning processes

Programmatic Processes: Project Development Methodology




DATA DRIVEN NEEDS IDENTIFICATION

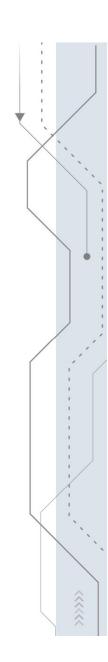
Programmatic Processes: Project Prioritization Methodology

Demonstrates fiscal responsibility

- Consistent methodology
- Data driven approach

Programmatic Processes:

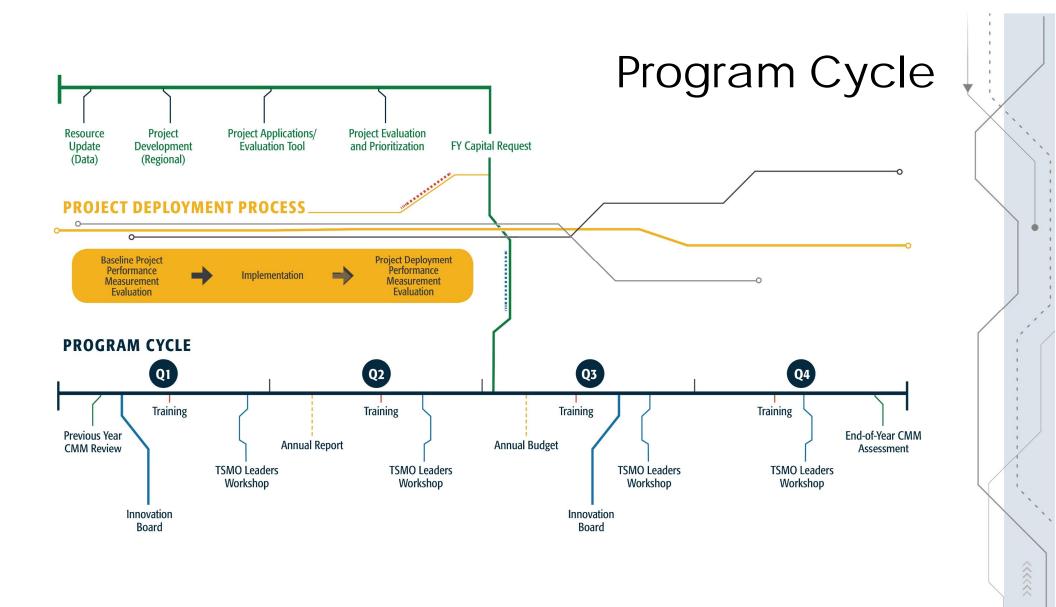
Project Prioritization Methodology

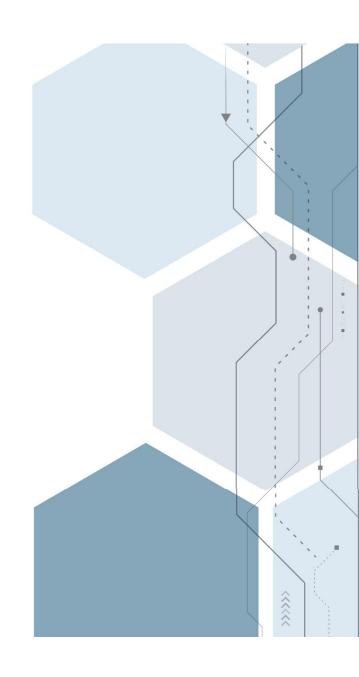

SAFETY (35%)							
Criteria	Data Source	Response	Score	Aggregate Weight			
Cra sh	Map - eCrash data	High/Med/Low	3/2/1	28%			
Evacuation Routes	Map/Routes	Y/N	1/0	2%			
Weather Sensitive	Map/State Report	Y/N	1/0	2%			
Freight Corridor	Map - NTAD	Y/N	1/0	3%			

	MOBILITY (25%)						
	Criteria	Data source	Response	Score	Aggregate Weight		
	Organizational Impact	Known by applicant	Statewide/ Regional/ Local	3/2/1	2%		
	Congestion	Map - RITIS (AADT)	High/Med/Low	3/2/1	23%		
	Urban vs. Rural	Мар	Urban/Rural	2/1	196		
8	Freight	Map - RITIS (TAADT)	High/Med/Low	3/2/1	5%		

ACCOUNTABILITY (20%)				COLLABORATION (15%)				INNOVATION (10%)						
Criteria	Data source	Response	Score	Aggregate Weight	Criteria	Data source	Response	Score	Aggregate Weight	Criteria	Data source	Response	Score	Aggregate Weight
Benefit/Cost	Develop Guidance	High/Med/Low	3/2/1	6%	Hubs*	Known by applicant/ Maps	Y/N (maybe points for multiple types)	1/0	4%	Traffic Management System Support	Known by applicant	Y/N (does it support Statewide Communications Infrastructure Plan)	1/0	4%
Maintenance and Operations	Known by applicant/App. process	Resource Identified/ Funding Available Rubric	2/1/0	6%	Public Partnership**	Known by applicant	Y/N (maybe points for Cross-regional/ Statewide/ Multi-agency)	1/0	3%	Multimodal	Known by applicant	Y/N	1/0	3%
Performance Measures	Known by applicant	Y/N	1/0	3%	Private Partnership**	Known by applicant	Y/N	1/0	3%	CAV Support	Known by applicant	Y/N	1/0	3%

Program Success

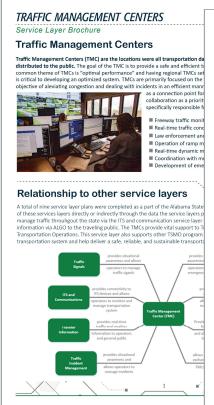

- Culture of Collaboration
- Performance Measurement
- Innovation


Program Plan Implementation

- Near Term FY20
- Short Term FY21-22
- Mid Term FY23-25

31	Review data practices annually for enhancement, quality improvements, and efficiencies.			
32	Develop simplified benefits analysis resources.			
33	Develop simplified sustainability analysis resources.			
34	Demonstrate program success through an annual report providing status related to program maturity, performance measures, benefits and sustainability analysis, etc.			
nn	ovation	Near Term (FY20)	Short Term (FY21-22)	Mid Term (FY23-24)
35	Convene Innovation Board made up of ALDOT, local agencies, research partners, industry professionals, and private industry.			
36	Identify and task technology leads to follow national research and opportunities.			
37	Prepare Connected and Automated Vehicle Preparedness Roadmap.			
38	Integrate academia to stay current with innovation.			
39	Create an atmosphere to cultivate pilot projects for innovative ideas.			

Service Layer Brochures



Service Layer Brochures

- General Overview
- Layman's Terms
- Brief Discussion of Benefits

SERVICE LAYER	DESCRIPTION	EXAMPLE		
ITS AND COMMUNICATIONS	A systematic and encompassing program that combines advanced communications-based information and electronic technologies to deliver a safe, reliable, and sustainable transportation environment	Fixed and mobile traffic detectors, non-enforcement traffic cameras, fiber-optic communications infrastructure		
TRAFFIC SIGNAL MANAGEMENT	Proactive operation, planning, and maintenance of traffic signal systems to deliver targeted solutions that improve efficiency, safety, and reliability of signalized intersection operations	Incident management signal adjustments, traffic signal emergency response plan, preventative maintenance, traffic signal coordination		
TRAFFIC MANAGEMENT CENTERS	Serves as the nerve center of DOT roadway management where data is collected, processed, and analyzed to aid in monitoring and implementing control strategies which improve the safety and efficiency of the roadway network	State TMC, Regional TMCs (RTMC) – Birmingham, Huntsville, Mobile, Montgomery, and Tuscaloosa		
TRAVELER INFORMATION	A range of ALDOT and partner agency managed technology solutions that provide traveler information and mobility choices to the public	511, Dynamic Messaging Signs (DMS), ALGO		
TRAFFIC INCIDENT MANAGEMENT	Systematic and coordinated program process to detect, respond to, and clear traffic incidents safely and efficiently	Alabama Service Assistance Patrol (ASAP) program integration with TMCs, TIM training program, ITS technology, coordination with partner public safety agencies		
EMERGENCY TRANSPORTATION OPERATIONS	Coordination of response to non-recurring large-scale events (e.g. flooding, hurricanes) that interrupt or overwhelm transportation operations to improve public/first responder safety and transportation network efficiency	TMC/EOC (Emergency Operations Center) coordination, ITS integrating into response plans, partnerships with public safety agencies		
WORK ZONE MANAGEMENT	Planned and coordinated process to manage traffic during roadway construction zones to improve worker and motorist safety and minimize traffic delay	Work zone ITS technology for dynamic management (dynamic queuing, variable speed limits, dynamic lane merge, entering/existing construction vehicle notification) and work zone traffic signal adjustments		
ACTIVE TRANSPORTATION AND DEMAND MANAGEMENT	Advanced technical solutions and innovative strategies to increase efficiency and safety to maximize the capacity of the existing roadway network	Adaptive ramp metering, dynamic speed limits, adaptive traffic signal control		
CONNECTED AND AUTOMATED VEHICLES	Connected and autonomous vehicles are an emerging generation of vehicles and have the potential to technology applications on the transportation network	Efficient platooning using intelligent speed adaptation (variable cruise control), event and traffic incident notifications and re-routing, and eco-driving		

SERVICE LAYER BROCHURES

ITS AND COMMUNICATIONS

Service Layer Brochure

INTELLIGENT TRANSPORTATION SYSTEM

Intelligent Transportation Systems (ITS) are critical to the successful achievement of the safe, reliable, and optimized management and operations of the transportation system a to implement other service layers. This Service layer Broothure provides a brief introducti provides examples of ITS and communication deployments; and speaks to the benefits of system.

FHWA defin

"electronics

information

singly or in

the efficience

of a surface

Without the installation of ITS and communication devices in the transportation network, the remainder of the Service Layers would not function at all, or would have dramatically lower benefits. The benefits of Traffic Signal Management and a Regional Traffic Signal Operations Program are greatly increased if the ability to remotely monitor and adjust signal timing. Traffic Management Centers and Traveler information are more efficient when real time data is able to be sent to the end user. And Traffic Incident Management and Work Zone Management provide safer roads when conditions are able to be observed at a momentum stocke.

COMMUNICATION IS KEY!

ITS devices transport data over a communications network typically comprised of a numi communication types. Communication mediums include legacy copper, fiber optic cable, radios, and cellular. Copper is no longer installed to support ITS deployments, however, it still remain in some locations where infrastructure has not been upgraded. Together, the communications infrastructure support the advanced communications-based informatio technologies to eleilwer a safe, reliable, and sustainable transportation environment.

Method	Fiber Optic	Wireless Radio
Medium	fiber optic glass	wireless
Benefits	high quality reliable	bypass physical barrie
Disadvantages	costly to build	physical connection st required
Best Use	corridors network backbone	last mile fiber gaps

TRAVELER INFORMATION

Service Layer Brochure

Traveler Information

Traveler information systems offer real-time information to travelers, allowing users to make informed decisions about their route and more choice. Encountering delays, especially those due to construction or of with no prior warning is a major cause of driver frustration. Providing

Relationship to other service layer

A total of nine service layer plans were completed as a part of the Alab information affects each of these service layers directly or indirectly the conditions. ALDOT traveler information receives data from the Taffic Konditions. Dot Traveler information receives data from the Taffic Konditions. Data received by and Emergency Transportation O'Perations are important sources of dat make travel decisions in real time.

TRAFFIC SIGNAL MANAGEMENT

Service Laver Brochure

Traffic Signal Management

Traffic signals play an intergral role in the transportation network serving to enhance the opperaional efficiency of corridors. Traffic signals are also the most common form of traffic control. Traffic signal amanagement is critical to the successful achievement of the ALDOT TSMO vision. Simply put, traffic signal management reduces congestion, reduces maintenance expenditures, and increases safely along the ALDOT roadway network. Traffic signal management provides and increddible benefit to cost ratio of 9.7 and 39 for integrated corridor management and between 17 and 62 for optimized traffic signals.

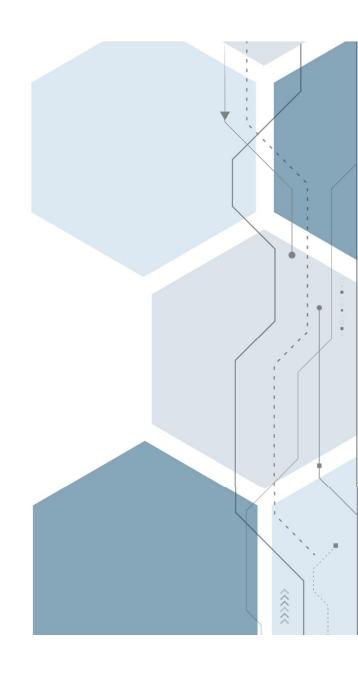
FHWA defines a traffic signal management as "organizing for the planning, maintenance, design, and operation of signalized intersections and traffic signal systems."

Coordinating People and Signals

Traffic signal management is an effective way to increase the efficiency of an existing networks. Strong coordination between signal engineers, uppermanagement, public relations, and citizens is how these programs operate successfully. Creating an open dialog that works its way from the citizens up the chain to the engineers and upper-management and finally, through public relations, beach to the citizens creates a transparent system that people build trust in. Allowing for for citizen input when reasting performance objectives and explaining the strengths and short comings of the network will result in realistic goals that can be achieved throughout the region. In many cases, this coordination does not currently exist, resulting in citizen complaints never being answered, disagreement between engineers and upper-management on how to address signal problems, and public relations announcements that fall to realistically portray goals and objectives.

Coordination between signals is equally as important as coordination between people. Creating and adjusting timing plans for peak and off-peak periods, using correct cycle lengths that can handle the current traffic flow, adjusting splits to minimize queueing and over all delay and adjusting offsets to keep vehicles flowing through the arterial network will all help reduce delay, increase safety, and reduce the time that commuters are in their vehicles. Creating a system that allows for the direct management of signals allows for real time adjustented based on changing

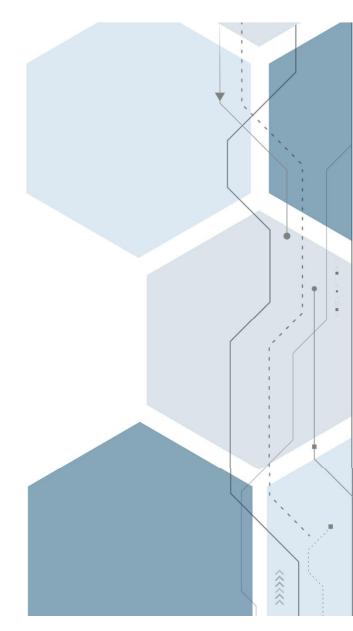
Uncoordinated Signal Timing


Coordinated Signal Timing

direct management of signals allows for real time adjusemtned based on changing

traffic conditions and creates a familiarity between the engineers and signals that can reduce maintenance costs and direct funds to signals that are in critical need of improvements. Without this system in place, multiple engineers will work across a range of signals which will decrease their familiarity, ultimately resulting in a reactive approach to signal management which will be more roaffy to maintain.

Next Steps



What Next?

- Programmatic Organizational Changes
- Program Support Budget
- Process Integration and Implementation
- Culture of Collaboration

ALD STATEWIDE TSMO Master Plan

Chris Hilyer Hilyerc@dot.state.al.us

Dennis Motiani Dennis.Motiani@kimley-horn.com

Natalie Smusz-Mengelkoch Natalie.Mengelkoch@kimley-horn.com